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The Matrix Formulation of Scattering Problems

J. VAN BLADEL, SENIOR MEMBER, IEEE

Abstract-Two regions in space are coupled through an opening

in a perfectly conducting surface. By using a complete set of eigen-

vectors in the opening, each region can be represented by an equiva-

lent Norton circuit involving a short-circuit current (a vector) and a

generator admittance (a matrix). The particular case of a cavity at

resonance is investigated. Application to a cavity terminated in a

waveguide is considered, and the transformation of the equivalent

circuit resulting from the shift of the terminal plane is aualyzed.

After solving the example of a slotted waveguide, a possible set of

eigenvectors for an arbitrary opening is proposed.

I. INTRODUCTION

A

TYPICAL “coupled regions” configuration is

shown in Fig, 1, where a field Z%,ki is incident on

.a metallic cavity I bounded by an infinitely thin

conducting wall S. The wall is provided with an aper-

ture S. The fields in Regions I and II can be computed

(in principle at least) once the tangential component

gt~n~ of the electric field in S’ is known. Suitable assump-

tions can be made concerning ;t..~ in certain particular

cases (e. g., for small holes and for slots). In general,

however, ;ta.~ must be determined by: 1

1)

2)

3)

expressing ~t..~ on the cavity side in terms of

Etang

expressing ~~..~ in Region I I in terms of ~t.n~, and

equating the two values of ~tl.z in S’, and solving

the resulting integral equation for ~t..=.

\I
II u Q

Fig. 1. A typical “coupled regions” problem.
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1 For the solution of an actual problem, see F. J. Kriegler, F. E.

Mills, and J. Van Bladel, ‘[Fields excited by periodic beam currents
~9:4 cavity-loaded tube, ” J. AppL Phys., vol. 35, pp. 1721-6, June

In this paper, we seek to formulate the problem in

terms of an equivalent network problem. Truly, the

computational work is not simplified by this approach,

but we believe that some conceptual clarity can be

achieved by showing the connection between the elec-

tromagnetic problem and the (perhaps) more familiar

network structure. Our treatment remains very general,

and we leave for future reports the application of the

network formulation to cavity filters, periodic struc-

tures, etc. Basically, our method rests on the use of an

old workhorse—the eigenvector method—to the deter-

mination of the fields in the aperture.

II. SCATTERING OF AN INCIDENT FIELD

BY A CAVITY WITH AN OPENING

The cavity shown in Fix. 1 is excited by the volume

currents T and by the aperture fields in S’. We shall first

assume that the frequency does not coincide with one of

its resonant values, leaving for Section I I I a discussion

of the phenomena at resonance. Under those circum-

stances, the electromagnetic field in the cavity is

uniquely determined by the values of ~ and IZ. X ~ on

S’. The two contributions are additive. For an evacu-

ated cavity, for example, the tangential ma~netic field

due to ~ isz

~gl(Q) = Sss[x hn&t(Q)zn(P’) _

1?!2 (km’ – ~,) ‘J(~’)~v’ (1)

where km is one of the resonant wave numbers, and ~.

and km are the normalized solenoidal eigenvectors. These

are connected by the relationships

5. = ~ curl&
1

and Fm = — curl A..
m km

Clearly, ~,1 is the field which exists on S’ when the

latter surface is short circuited. The contribution from

(IL x ~) can be written as

(2)

2 J. Van Bladel, Electromagnetic Fzelds. h~ew York: McGra~v-Hill,
1964, pp. 299,415, 500, and 504.
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where ~ti, denotes a normalized irrotational magnetic

eigenvector.

The field ~tm~ on the outer side of s is similarly

given by the sum of a “short-circuit” cc,mponent ~$J(Q)

and a contribution due to ( — IZ.) X ~ (we write — ii.

because it is the unit vector along the outer normal of

Region II which should be used). This contribution can

be written as

~~’’(Q) = -ff~,S1’(QIQ’)U.)<~(~)~~ (3)

Eqllating the two values of ~fia.~ on both sides of S’

leads to the integral equation

JJ, I[s’(Q Q’)+ $311(QI Q’)] “% X ~(Q’)d~’

= ~gll(Q) – ~g’(Q) . (4)

At this point we introduce~ a set of vectors &, com~lete

in S’, and satisfying the orthonormality property

Ss
Gm. Gk*dSt = &k.

St

Utilizing the expansions

z = ~, Vmam
m

Y,l = Eat x tin = ~ I..%.
m

1,1~ = ~gll x (– 27.) = ~ ~gmr%m

m

IS’(Q I Q’) = – ~ ~ ~rw’zz X G(Q)z X @p*(Q’)
np

~ll(Q ] Q’) = – ~ x Vn.ll(–zzn X I%(Q))

~(--;,,; Z2,*(Q’))

(5)

(6)

and equating the values of ~ X tin on both sides of S’

leads to the following net~~ork equations

IglI – FIIIVI — Y12W2 .

= – (fglII – FI,I’VI – VJI~2 – . . . )

1,2.1 – Y211VI – V2JV2 . . .

– (1,2
II _ y2111~I — ~Z2]1~2 ——— .) (7)

etc . . . . .

which can be written more concisely as

(8)7,11 + 7,1 = (y I + yII) .7.

It m-ill be noticed that ~~1 and ~# are the surface cur-

rent densities on the short-circuited surface S’. A

s The idea of expanding the tangential fields in a complete set
seems to be due to A. Tonning, “On the network description of elec-
trprnagnetic .~eld problems, ” Rept. AF<RL-62-967, 196?= Tonning
utlhzes two olorthogonal sets, one for &a”~ and one for Ht,.x.

matrix such as WI has a simple physical interpretati on.

From (7), indeed, it is the linear relationship which

exists between the tangential electric field on S’ and the

resulting field & X ~b on the cavity side of ,S. Thus,

“projection & X ~bI on the & space

= Y’ X projection of ~ on the @ space.”

In circuit terms, WI is the admittance Iooki ng intc~ 1,

i.e., the ratio between ~X t~~, and ~t~~~, where & is the

unit vector pointing inside 1. The sign conventions em-

bodied in (6) ensure that the admittance looking into a

matched waveguide load, for instance, is equal to the

@sitive characteristic resistance R. (and not to –R.).

This point will be belabored in Section IV.

The circuit equation (8) can be represented sc’he-

maticall y as in Fig. 2. It is seen that the field problem

reduces to the determination of ~, i.e., of the inverse of

the Yr + YII matrix. The Y matrix has the usual proper-

ties of an admittance matrix. Assume, for example, that

the cavity contains an anisotropic medium whose e and

p are Hermitian tensors (i= C* and F = P*). It is easy to

- ~
-n
IgdjY= (tj

./
Y1 ‘t v

-------.
Fig. 2. Equivalent network for a scattering problem.

show, by classical methods,2,4 that

Yik = – Y&%* (9)

i.e., that the admittance matrix is skew- Hermitian. For

symmetric tensors and real base vectors ;i, the ma /rix

becomes symmetric, i.e.,

Y,~ = Yk%. (lo)

II 1. CAVITIES AT RESONANCE, COUPLED

CAVITIES, AND QUADRUPLES

.4ssume for simplicity that Cavity I does not contain

an>- volume sources and is filled with a nondissipative

medium. When k coincides with one of the resonant

values k,, the Green’s dyadic becomes infinite. The

fields in the aperture, however, must remain finite be-

cause of the finite value of Q of the loadecl cavity. 1 t is

therefore necessary [see (2) ] that the tangential field

satisfy the relationship.

lim S.f(anx~).k,dS = O. (11)
k-k. S*

4 See, e.g., Tonning,8 or R. F. Barrington and A. T. Villeneuve,
“Reciprocity relationships for gyrotropic media, ” IEEE Tram,. on
Micvowane Theory and Techniques, vol. MTT-6, pp. 308-310, July
1958.
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The situation is not unlike that of Fig. 3, where the

voltage across LC becomes zero at resonance (while the

current remains finite) even though the admittance be-

comes infinite. For the cavity, similarly, the coefficient

of excitation of the resonant mode ?,, k, must remain

finite. It follows that the expression

[SS
(ii. X ~) ~ii.dS

lim 1 (12)
k+k, s’

&2 – k2

must remain finite. To further examine this limit, notice

that the real eigenvector ~~ can be represented by the

following expansion, valid in S’:

It is then a simple matter to sho~r that each resonant

mode contributes a term

to Ymn. Let Y’ be the matrix obtained by deleting the

contribution of mode v from Y’. The circuit equations

can now be written in the following way to emphasize

the contribution of mode v:

1.111 = ( Yn’ + Y1lII)V1 + ( Yl,’ + Y12WV2 + “ “ “

+
jwe

B1.[B1.*V1 + B2v*172 + “ “ .1
k2 _ &2

1.211 = ( Y,,’ + Y2111)V1 + ( Y22’ + Y2211)V2 + “ “ “

+
jme

B2P[BI,*VI + BZ,*V2 + . . . ].
k2 – k.z

(13)

etc . . . . .

As k approaches k., the quantity D,= BI,* 1’1

+B2,*J7g+ . . . must approach zero in such a manner

that

lim jue(B,,*V, + . . ) = C(k2 – k,’)
k-k.

where c should be determined in order to fully evaluate

the fields in the cavity. The formal solution proceeds by

rewriting (13) in terms of C, and adding the condition

D,= O (the uncoupling condition) to the equations, viz,

Fig. 3. A source connected to a resonant circuit.

( v,; + Y,,II)V, + ( r,,’ + Y1211)V2 + “ “

+ BIVC = 1,,1’

( Y,l’ + Y2,11)VI + ( Y,,’+ Y,znv, + “ “ “

+ B2VC = Ig21’

BI,*VI + B2p*V2 + ~ “ . = O. (14)

This is a system of equations with as many equations as

unknowns, and out of which VIVZ, . . . , C can be deter-

mined.

The schematic diagram of Fig. 2 clearly shows that

the region situated on a given side of the opening can be

represented by a current generator in parallel with an

admittance matrix. In this extension of Norton’s theo-

rem, generator and matrix have poles at the eventual

resonant frequencies of the region. When two cavities

are coupled together through a common aperture, the

resonant frequencies of the total structure are deter-

mined by the condition that (WI+ YII). ~ = O admits a

nonzero solution for ~. This condition implies that the

determinant of the (infinite) system vanishes,5 which is

the desired equation for the eigenfrequencies.

The equivalent network method also can be used to

analyze the composite structure shown in Fig. 4. We

now introduce two sets of vectors, ti~’ and a~”, respec-

tively complete and orthonormal on .S’ and S’. The net-

work equations take the form

7,11+ Tg’ = (y’ + y19 .7’ + y~ v“

~gIII + ~g~f _ yp.~’ + (y” + yIII).~’. (15)

As before, a matrix such as Y’ represents the linear rela-

tionship between ~,... and the resulting tangential

field En X ~~ on .S’. The currents ~,’ and ~0” are the

short-circuit currents produced by the volume sources of

I on the short-circuited surfaces .S’ and S“, respectively.

In the quadruple equations (15), symmetry properties

exist for the mutual admittance matrices lj~ and YP. Re-

membering that Y“. ~“, for example, represents the

field, p.’X ~ produced on the short-circuited surface S’

by the electric field ~=22 ~~~’’~~” on S“, it is easy to

show4 that

Y& = – ( 172~~)* (16)

3 For an early application of this method to the nosed-in klystron
cavity, see IV. C. Hahn, “A new method for the calculation of cavity
resonators. ” J. A ppl. Phys., vol. 12, pp. 62–68, January 1941.

II

Fig. 4. Series combination of “coupled regions, ”
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v’hen the medium inside I is Hermiti,an, and

Y@’ = Y21~ (17)

when the medium is symmetric and the a’s are real.

The quadruple equations (15) allow one to apply the

\\-hole body of network theory to the cascade connection

of electromagnetic structures. The structure to the left

of S“ in Fig. 4, for example, can be replaced b~~ a short-

circuit current

7“” - wp . (y’ + y“)-’ (7,” + 7,’) (18)

in parallel \rith an admittance

y“ + y’” (y’ + yI’)-’ ~y~. (19)

I\7. .~PPLICArION TO A WAVEGCTI DE PI< OP,I.EM

Figure 5 shows a cavity I terminated by a \vaveguide

arm. Seen from the cross section .S’, the cavity has an

(assumedly given) admittance matrix Y’. It is our pur-

pose to determine the admittance Y“ in S“.

The eigenvectors ~n suitable for the present problem

are, from classical waveguide theory,z

grad d~,

IL X grad V.. = ii. X grad T.,

where

7.,2%, + pm,%,,

V. UW,L8 + vn,wfn.

“rhese eigenvectors

=0 +., = O on contour C of S’

(3V
=0 —:= O on contour C of S’.

dtl

are normalized in such a mTay that

SS(grad @~P)2dS =
Ss

(gradl TJ2dS = 1.
s s

The operator W and the eigenvalues ,u~P2 and Vm,z are

real. The eigenvectors can therefore be taken as real.

W’e shall assume that all modes are damped except the

lowest TE mode (subscript 11), and set

~m.n’ = ~mpz — kz

6.,’ = v.,’ – l?z (?2, s # 1, 1)

k’llz = kz – V112

u’ith kz = W%OPO.The fields on S’ can be expanded as

Fig. 5. Cavity with a waveguide output.

~ = ~ Vnp’ grad On, + V1l’ grad Tlt

%P

X t.. + ~ v., grad Q., X IZ.
n,s#l, l

~ X ti. = ~ X % = ~ I~p’ grad l%. + 311’ grad ‘Vii
mp

X 27, + ~ 3,,.’ grad Vn, X z.. (20)
n,s#l,l

Similar equations can be written for the fields on S“,

provided the primes are replaced by double pri rnes.

Solution of the waveguide equations gives the follov;ing

relationship between “voltages” and ‘icurrents. ” For

the propagated mode:

VII’ = vII” cos klJ +jRCUll” sin kll L

311’ = ~ VI” sin kllL + 311” cos kllL (21)
c

~vhere l?. = wpo/Rll. For the damped modes:

V’ = V“ cosh yL + ZCI” sinh VL (22)

1
I’ = ~ V“ sinh yL + I“ cosh qIL

c

and

W’ = y“ cosh 8L + ZC3° sinh 61.

1
3’ = y l)” sinh 6L + s“ cosh ~L (23)

c

\vhere

jtiuo
Z.=; and ZC=—

jweo 8“

The primed voltages and currents which appear in (21)

through (23) are relative to the fields to the right of S’.

The magnetic field to the left of S’ is given b~ the vector

~t = ~gf _ y.~ (24)

where ~~’, for example, is the column vector represent-

ing the short-circuit field

~,’ X ti. = ~ un,’ grad @~p + TL1l’ grad VII
mP

X 17~+ ~ ~.,’ grad V., X ziz.
‘n,. #1,1

The components of ~.’ are, therefore, U1l’, 7L12’, . . ., ‘U1l’,

Ill”, . . . . Introducing the values of 7’ and ‘~ obtained

from (21) through (23) into (24) leads to an (equation of

the type

7“ = 7,” – y“ 7“ (25)

where the desired Norton To” and y“ can easil:~ be

found after some cumbersome algebraic manipulation.
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One obtains

7,” = [c+ y’ .yc-l .~]–l . ~gl

y“ = [c+ y’.yc-l.s]-’. [y’. c + yc.s]

ON MICROWAVE THEORY AND TECHNIQUES MARCH

The actual value of the voltage vector ~’, i.e. of the

coefficient of excitation of the various modes at the

level of cross section S“, cannot be determined unless

the input admittance of Volume II is given (Fig. 5). If

II is an infinitely long waveguide, for instance, one has,

in addition to (28), the relationship

l“ = y..v’.

Comparison of the two equations leads to the expected

result that all V’s vamsh except VII”, i.e., that no

damped modes exist at the “junction” S“.

To illustrate the actual calculation of an equivalent

circuit, we consider the slot antenna shown in Fig. 6,

where the contour of the cross section is arbitrary. It is

assumed that the slot is resonant, so that the voltage

across the slot varies according to the relationship

v= Vocos:(z – 20)

where ZO refers to the position of the center of the slot,

and L (approximately equal to A/2) is the length of the

slot. Let CObe the value of the contour coordinate at the

(26)

(27)

where the diagonal matrices Y., C, and S are given by

1
0 0 . . .

Zcll

1
o—

.2.12

o
1

ZC12

o . . .
I

o cosh 712L

c=~ o

1“

1:[

I center of the slot. We assume that the voltage across

COSkllL
I
I

the slot is a constant, independent of the loading condi-

tions, so that the tangential electric field in the slot is of

the form

Etang = Vo Cos : (z – 20) tica(c – co). (30)

cosh &2L

“.1

;inh Y1lL o

0 sinh y12L

o

. . . . . .

D

z

s= sin kllL

Equations (25) through (27) allow one to see how the

Norton terms vary with the distance L. For very large

L, the contribution from the damped modes tends to

I I

~z’o ~z=zo
I

vanish, and (25) takes the form
Fig. 6. Waveguide with a slot.

Ill”

T12°

311”

312”

1
0 . . .

z Cll

0+
.12

onst.

. .
(28)

I

7.)12”

(“

I

10 YJ’

1

(“ z C12

0

(“
where the contribution from the propagated mode has

the value

son’
~gll” =

cos kllL + jRCY1l’ sin kllL

1 R~Yu’ + j tan kllL .
Yll” = —

Rc 1 + jR,Yl~’ tan kllL
(29)

Fig. 7. Opening of arbitrary shape.
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Utilizing this value of the boundary excitation in the respectively, to the curves of constant Vjl and constant

waveguide equations allows determination of the cross- Vl, and directed to increasing coordinates. The Dirichlet

sectional fields at z’ = D, i.e., of ~gll” and %11”. With a functions of interest are now defined by the relationships

short circuit at z = O, one finds, for example,
vs%%p + pmp%I%p = o

72= 1)11 grad ill X ti, @~P = O on (C).

-———__ ——————— ——- --——-
5.11” ‘YII”

in which the normalization factor

has been left unspecified, and where l~ll(cO) is the value

of the eigenfunction at the location of the slot.

The choice of the most suitable eigenvectors @ is

simple for a waveguide cross section. For an opening S

of arbitrary shape, we propose the following generaliza-

tion for the waveguide eigenvectors.e We choose orthog-

onal coordinates vI, vZ, taken for instance along the lines

of curvature of the surface2, and such that the direction

of increasing v1, the direction of increasing v2, and the

positive normal w form a right-handed system of axes

(see Fig. 7). An increase dvl, dv~ in the value of the co-

ordinates results in a displacement dl of magnitude.

dl = (h12dv12+ hz2dvz2)1!2.

Some important surface differential operators for a

scalar function ~(vl, v2) are

where % and & are vectors of unit length and tangent,

~ An actual example of application of these generalized eigen-
vectors can be found in Van Bladel, 2 p. 467, where the aperture S’ is
a spherical cap.

The Neumann eigenfunctions are defined by

V+Y., + Vn,wn, = o

w?..
—= Oon (C)

am

where nz is a direction in the tangent plane, perpendicul-

ar to (C), and directed outward from the region en-

closed by (C). Utilizing the basic relatia,nshipsz

Ss(AVS2B – BV.2A) dS
s

s
= (A grad. B – B grad, A) o~~~dC (31)

c

Ss(AVS2B + grad, A . grad. B) dS
s

.
J

A (ti~ ograd B) dS (32)
c

it is easy to show that the eigenvalues pz andl Vg are real

and non-negative (and hence, that the eigenfunctions

can be chosen real), that the @’s form an orthogonal sys-

tem and the W’s another orthogonal system, and that

the vectors

grad. @~P

grad. *.. X &

form an orthogonal system on S. These vectors are nor-

mal to the contour (C) of the aperture, ancl are there-

fore particularly well suited for expanding the vectors

~,,ng and ~X %, which are also normal to (C).


