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Abstract—Two regions in space are coupled through an opening
in a perfectly conducting surface. By using a complete set of eigen-
vectors in the opening, each region can be represented by an equiva-
lent Norton circuit involving a short-circuit current (a vector) and a
generator admittance (a matrix). The particular case of a cavity at
resonance is investigated. Application to a cavity terminated in a
waveguide is considered, and the transformation of the equivalent
circuit resulting from the shift of the terminal plane is analyzed.
After solving the example of a slotted waveguide, a possible set of
eigenvectors for an arbitrary opening is proposed.

I. INTRODUCTION
ﬁ- TYPICAL “coupled regions” configuration is

shown in Fig. 1, where a field &, %, is incident on

a metallic cavity I bounded by an infinitely thin
conducting wall S. The wall is provided with an aper-
ture §'. The fields in Regions I and II can be computed
(in principle at least) once the tangential component
G1ang Of the electric field in S is known. Suitable assump-
tions can be made concerning &, in certain particular
cases (e.g., for small holes and for slots). In general,
however, &;.n, must be determined by:!

1) expressing fisang On the cavity side in terms of

étang
2) expressing fic.ng in Region I1 in terms of &g, and
3) equating the two values of /iang in S, and solving
the resulting integral equation for &iapne.

S

Fig. 1. A typical “coupled regions” problem.
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ilr;6a4cavity—loaded tube,” J. Appl. Phys., vol. 35, pp. 1721-6, June

In this paper, we seek to formulate the problem in
terms of an equivalent network problem. Truly, the
computational work is not simplified by this approach,
but we believe that some conceptual clarity can be
achieved by showing the connection between the elec-
tromagnetic problem and the (perhaps) more familiar
network structure. Our treatment remains very general,
and we leave for future reports the application of the
network formulation to cavity filters, periodic struc-
tures, etc. Basically, our method rests on the use of an
old workhorse—the eigenvector method—to the deter-
mination of the fields in the aperture.

II. SCATTERING OF AN INCIDENT FIELD
BY A CAVITY WITH AN OPENING

The cavity shown in Fig. 1 is excited by the volume
currents J and by the aperture fields in .S’. We shall first
assume that the frequency does not coincide with one of
its resonant values, leaving for Section III a discussion
of the phenomena at resonance. Under those circum-
stances, the electromagnetic field in the cavity is
uniquely determined by the values of J and 4%, X E on
S’. The two contributions are additive. For an evacu-
ated cavity, for example, the tangential magnetic field
due to 7T is?

150 - [ [ [ £ ==L 30ma

(kn® — &)

where %, is one of the resonant wave numbers, and é,
and %, are the normalized solenoidal eigenvectors. These
are connected by the relationships

hnm = —curlé, and ¢, =— curl /.

m ”

Clearly, H} is the field which exists on 5" when the
latter surface is short circuited. The contribution from
(%, X E) can be written as

7@ = [ [ [~ =Twone

Q) (O
)3 (Q)hn(Q)

— jwe PRy ]m X E(Q))dS’

= f fs,Q‘((ﬂ )it X E(Q')dsS" )

% J. Van Bladel, Electromagnetic Fields. New York: McGraw-Hill,
1964, pp. 299, 4185, 500, and 504.
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where g, denotes a normalized irrotational magnetic
eigenvector.

The field Hyumg on the outer side of .S’ is similarly
given by the sum of a “short-circuit” component 7,7 (Q)
and a contribution due to (—,) X E (we write — i,
because it is the unit vector along the outer normal of
Region II which should be used). This contribution can
be written as

1@ = - [ [ g0l orm xE@s. ®

Equating the two values of Hiane on both sides of S’
leads to the integral equation

[ ls@ior+guel o-a x E@us
= Q) - THQ). @

At this point we introduce?® a set of vectors &,, complete
in 8, and satisfving the orthonormality property

f f Btm - 8 *AS" = S (3)

Utilizing the expansions
E =3 Vaan
Tt = ‘I;T X = D Ipnlan,
T =W 1 X (—dn)m: > Tl et
glQ| Q) = — ; Z Vil X 80(Q) X 8(Q")
guele) = - ; Z Vool (=4 X 3:(Q))
(=1 X 3,5(Q")) (6)

and equating the values of H X, on both sides of S’
leads to the following network equations

I = VulVy — Vo'V, - -

= — [T — V"'Vy— V'V — - - +)
Ipel — VoulVy — Vool Vs - - -
= — Ip" — Vou''Vy — VooV — - - ) (1)
etc. - - -

which can be written more concisely as
Y+ Y-V )

Tt will be noticed that Js! and JsUI are the surface cur-
rent densities on the short-circuited surface S’. A

_Tgn + Tgl —

¢ The idea of expanding the tangential fields in a complete set
seems to be due to A. Tonning, “On the network description of elec-
tromagnetic field problems,” Rept. AFCRL-62-967, 1962. Tonning
utilizes two biorthogonal sets, one for Eiumg and one for Hiang.

matrix such as Y has a simple physical interpretation.

From (7), indeed, it is the linear relationship which

exists between the tangential electric field on S’ and the

resulting field . X, on the cavity side of S’. Thus,
“Projection i, X Hyl on the & space

= YI X projection of E on the & space.”

In circuit terms, Y' is the admittance looking into I,
i.e., the ratio between H X ,, and Eiwag, where i, is the
unit vector pointing inside I. The sign conventions em-
bodied in (6) ensure that the admittance looking intoa
matched waveguide load, for instance, is equal to the
positive characteristic resistance R, (and not to —R,).
This point will be belabored in Section IV.

The circuit equation (8) can be represented sche-
matically as in Fig. 2. It is seen that the field problem
reduces to the determination of V, i.e., of the inverse of
the Y'+ Y™ matrix, The Y matrix has the usual proper-
ties of an admittance matrix. Assume, for example, that
the cavity contains an anisotropic medium whose € and
u are Hermitian tensors (€ =¢* and g=u*). It is easy to

O] [0

Fig. 2.

<l

Equivalent network for a scattering problem.

show, by classical methods,?* that
V= — Vi* 9)

i.e., that the admittance matrix is skew-Hermitian. For
symmetric tensors and real base vectors &, the matrix
becomes symmetric, i.e.,

Yik = Ykl- ('10)

III. CavritiEs AT REsoNANCE, COUPLED
CAVITIES, AND QUADRUPOLES

Assume for simplicity that Cavity I does not contain
any volume sources and is filled with a nondissipative
medium. When % coincides with one of the resonant
values k,, the Green’s dyadic becomes infinite. The
fields in the aperture, however, must remain finite be-
cause of the finite value of Q of the loaded cavity. It is
therefore necessary [see (2)] that the tangential field
satisfy the relationship.

Jim f (0 X E)-dS = 0. (11)
SI

k—ky

4 See, e.g., Tonning,? or R. F. Harrington and A. T. Villeneuve,
“Reciprocity relationships for gyrotropic media,” fEEE Trans. on
Microwave Theory and Techniques, vol. MTT-6, pp. 308-310, July
1958.
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The situation is not unlike that of Fig. 3, where the
voltage across LC becomes zero at resonance (while the
current remains finite) even though the admittance be-
comes infinite. For the cavity, similarly, the coefficient

of excitation of the resonant mode é,, %, must remain
finite. It follows that the expression

lim |: f
k—ky St

must remain finite. To further examine this limit, notice
that the real eigenvector [, can be represented by the
following expansion, valid in .S’:

(4. X E) ~E,d5:| (12)

kS — k2

Q) = 22 Bamtln X &u(Q) = 22 Bun*n X @*(Q).

It is then a simple matter to show that each resonant
mode contributes a term
Jwe

- Bmanv
k2t — k?

to V.. Let ¢ be the matrix obtained by deleting the
contribution of mode » from Y. The circuit equations
can now be written in the following way to emphasize
the contribution of mode »:

Igln = (Yn' + Y11H)V1 + (Ym’ + Y12H)V2 + -

Jwe
o BelBu TVt BVt -

[g2II = (Yzl’ + Y21H)V1 + (Yzzl + Y22H>V2 + e

jwe
+ ———Bu[By*V1+ B, Vot - - ] (13)
k2 — k2
etc. - - -
As F approaches &, the quantity D,=B,*T,
+ Bs,* 15+ - - - must approach zero in such a manner
that

lim jwe(Bu,*Vi4 - - - ) = C(k* — k2

k—>ky

where C should be determined in order to fully evaluate
the fields in the cavity. The formal solution proceeds by
rewriting (13) in terms of C, and adding the condition
D, =0 (the uncoupling condition) to the equations, viz.

(] Y. %LC
2k

Fig. 3. A source connected to a resonant circuit.
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(Yo + Vul)Vi+ (V' + Vil OV + - - -

+ B,C = ]g1H
(Vo + Vo)V + (Vo' + Vol OV + - - -

+ By C = It

.Bly*Vl + Bz,.*Vz "I‘ s = 0 (14)

This is a system of equations with as many equations as
unknowns, and out of which V1V, - - -, C can be deter-
mined.

The schematic diagram of Fig. 2 clearly shows that
the region situated on a given side of the opening can be
represented by a current generator in parallel with an
admittance matrix. In this extension of Norton's theo-
rem, generator and matrix have poles at the eventual
resonant frequencies of the region. When two cavities
are coupled together through a common aperture, the
resonant frequencies of the total structure are deter-
mined by the condition that (Y'+Y™*). V=0 admits a
nonzero solution for V. This condition implies that the
determinant of the (infinite) system vanishes,® which is
the desired equation for the eigenfrequencies.

The equivalent network method also can be used to
analyze the composite structure shown in Fig. 4. We
now introduce two sets of vectors, &,’ and &,'’, respec-
tively complete and orthonormal on .S” and .S”/. The net-
work equations take the form

TgH + Tg/ = Cy, + (HH) -V + (ym_v”

T T = T (Y T (15)
As before, a matrix such as Y’ represents the linear rela-
tionship between Ei.,, and the resulting tangential
field g, X Hs on S’. The currents I, and I,/ are the
short-circuit currents produced by the volume sources of
I on the short-circuited surfaces S’ and S”, respectively.
In the quadrupole equations (15), symmetry properties
exist for the mutual admittance matrices Y~ and 4y». Re-
membering that Y~ T, for example, represents the
field, z,’ X H produced on the short-circuited surface S’
by the electric field E=2T1,"a," on S, it is easy to
show* that

Vig? = — (Va)* (16)

® For an early application of this method to the nosed-in klystron
cavity, see W. C. Hahn, “A new method for the calculation of cavity
resonators.” J. Appl. Phys., vol. 12, pp. 62-68, January 1941.

Fig. 4.

Series combination of “coupled regions.”
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when the medium inside I is Hermitian, and

Ylgp = Yglm (17)
when the medium is symmetric and the a's are real.

The quadrupole equations (15) allow one to apply the
whole body of network theory to the cascade connection
of electromagnetic structures. The structure to the left
of §"" in Fig. 4, for example, can be replaced by a short-
circuit current

L=y +yn @A) )
in parallel with an admittance
Yy (Y YDy (19)

IV. APPLICATION TO A WAVEGUIDE PROBLEM

Figure 5 shows a cavity I terminated by a waveguide
arm. Seen from the cross section &/, the cavity has an
(assumedly given) admittance matrix 4. It is our pur-
pose to determine the admittance Y’/ in %,

The eigenvectors @, suitable for the present problem
are, from classical waveguide theory,?

grad ¢m,
i, X grad ¥,, = 4, X grad ¥,,

where

Vit ®np + tmpi®ry = 0 $,, = 0 on contour C of §’

0¥,

—— == 0 on contour C of 5.

vzyQ\I/ns + VﬂSQ\IIILS = 0
an

These eigenvectors are normalized in such a way that

ff (grad ®,,,)2dS = ff (grad ¥,,)2dS = 1.
s 5

The operator V? and the eigenvalues u,,* and »,? are
real. The eigenvectors can therefore be taken as real.
We shall assume that all modes are damped except the
lowest TE mode (subscript 11}, and set

9
Vmp® = Wmp® — k*
6n82 = Vnsz — k?

ki ? = k% —viy?

(n.s#1,1)

with k2= w%guo. The fields on S’ can be expanded as

Y

@ \
U, ) ]] !

L ~ 7

Fig. 5. Cavity with a waveguide output.
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E =) Vn, grad ®,, + U1’ grad ¥y,

mp

X ’[iz "'_ Z eUns gl‘ad \I'ns X ﬂz

n,8£1,1

HX 4, =HX @, =D I, grad ®,, 4+ 5,/ grad ¥y,

mp

X i, + Y. 5, grad¥,, X @,

n,s1,1

(20)

Similar equations can be written for the fields on .S,
provided the primes are replaced by double primes.
Solution of the waveguide equations gives the following
relationship between “voltages” and “currents.” For
the propagated mode:

”()11/ == ’Un” cos kil _l_chSll,/ sin kuL

311’ = %‘ ’Ol" Sil’l kuL + 511” COSs kllL (21)
where R.=wuy/Ru. For the damped modes:
V' =V"coshyL + Z.I" sinh v L (22)
1 .
I = e V" sinh vL + 1" cosh v L
and
V' = ~" cosh 6L + Z,3" sinh 6L
1
¥ = —U"sinh 6L + 3" cosh §L (23)
where
04 W
Zc =T and L, = ] ’ :
Jweg )

The primed voltages and currents which appear in (21)
through (23) are relative to the fields to the right of 5.
The magnetic field to the left of .S is given by the vector

=1/ —-y-v (24)
where 7/, for example, is the column vector represent-
ing the short-circuit field

Ty X i = Y thny grad @,,, + Uy’ grad ¥y,
mp

X1, + D, U grad ¥, X ..

n,851,1
The components of 7, are, therefore, uy/, 11/, - -+, Uy,
Uy, - - - . Introducing the values of I’ and 7’ obtained

from (21) through (23) into (24) leads to an equation of
the type
'I‘N — 70// . ¢y//."17‘// (25)

where the desired Norton I, and <Y’ can easily be
found after some cumbersome algebraic manipulation.
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One obtains
Ta” = [C + (yl 'cycﬁl'S]_l'Ta’ (26)
Y =[C+y Y-S Y C Y ST @)

where the diagonal matrices Y., C, and S are given by

1
0 0
chl
1
0
chz
.= 1
Y 0 1
R.
1
0
. Zc12
{cosh vl 0 0
\ 0 cosh yysL
C = { 0 CO'S kuL
cosh 812L
sinh 'yuL 0
0 sinh yi2L
S = 0 sin byl
Sinh 512[4

Equations (25) through (27) allow one to see how the
Norton terms vary with the distance L. For very large
L, the contribution from the damped modes tends to
vanish, and (25) takes the form

[11// 1 0 Vllll
Iy Zey Vi

. 1

’ 144 /; 0 - "’
511 = |3 911 —_ ch . . I ’On (28)
315" 0 Yur” Ve’

1
Zeys

where the contribution from the propagated mode has
the value

3,11
ngl’, = o
cos knL + ch(yu' sin kuL
1 RYi + 4 tan kL
Yu' = Yu T - (29)

Ec 1 +ch(y11’ tan kL '
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The actual value of the voltage vector V”/, i.e. of the
coefficient of excitation of the various modes at the
level of cross section S/, cannot be determined unless
the input admittance of Volume I1 is given (Fig. 5). If
I1 is an infinitely long waveguide, for instance, one has,
in addition to (28), the relationship
711 — ‘HC'V".

Comparison of the two equations leads to the expected
result that all 7’s vanish except Uyu'/, i.e., that no
damped modes exist at the “junction” S”.

To illustrate the actual calculation of an equivalent
circuit, we consider the slot antenna shown in Fig. 6,
where the contour of the cross section is arbitrary. It is
assumed that the slot is resonant, so that the voltage
across the slot varies according to the relationship

T
9 = Vocos—L— (Z — Zy)

where Z, refers to the position of the center of the slot,
and L (approximately equal to A/2) is the length of the
slot. Let ¢ be the value of the contour coordinate at the
center of the slot. We assume that the voltage across
the slot is a constant, independent of the loading condi-
tions, so that the tangential electric field in the slot is of
the form

_— s
Etang = Vo COSE (Z - Zo)ﬁc&(c - Co). <30)
e SN -
\ Ue
\ -y \
\ ] \
1 I 1
.
1
AR z
II \‘ ,I
S s ©)

D
o

z-0 z:-1,

Fig. 6. Waveguide with a slot.

Fig. 7.

Opening of arbitrary shape.
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Utilizing this value of the boundary excitation in the
waveguide equations? allows determination of the cross-
sectional fields at 2’ =D, i.e., of 3,/ and Y. With a
short circuit at 2=0, one finds, for example,

E = Uy grad Y1 X 4,

271”1/1121//11(60)
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respectively, to the curves of constant vs and constant
v, and directed to increasing coordinates. The Dirichlet
functions of interest are now defined by the relationships

VS2¢mp + l/vmp2¢mp = 0
&, = 0 on (O).

(k12Z0)

k1L sin
cos
7’ 2 sin
I

jwﬂoLATxlz <}3112 —

kll e
-Un

_— rad ¥1; X 4,
° jw,uo tan kuD & .

(k11D)

17
3011

in which the normalization factor

ff (grad ¥q)%dS

has been left unspecified, and where Y11(co) is the value
of the eigenfunction at the location of the slot.

The choice of the most suitable eigenvectors & is
simple for a waveguide cross section. For an opening S
of arbitrary shape, we propose the following generaliza-
tion for the waveguide eigenvectors.* We choose orthog-
onal coordinates v, 7, taken for instance along the lines
of curvature of the surface?, and such that the direction
of increasing 71, the direction of increasing v, and the
positive normal # form a right-handed system of axes
(see Fig. 7). An increase dvy, dv; in the value of the co-
ordinates results in a displacement d/ of magnitude.

dl = (ha?dv,? + hatdos?)2,

Nu?

Some important surface differential operators for a
scalar function f(v1, ve) are

1 of 1 of
grad, f = — — di3 + —

hl (97)1 hz ‘5;2_
G:
)

(22
1 9 af>+ 1 9 (hl af>
07)1 ]’Zlhz (97)2 hz (9‘02

hlhz (9‘2)1
where 4; and 4, are vectors of unit length and tangent,

¢ An actual example of application of these generalized eigen-
vectors can be found in Van Bladel,? p. 467, where the aperture S is
a spherical cap.

(yu//

The Neumann eigenfunctions are defined by
Vs Whs + v0?Wps = 0
V.,
om

=0 on (C)

where m is a direction in the tangent plane, perpendicu-
lar to (C), and directed outward from the region en-
closed by (C). Utilizing the basic relationships?

ff (AVs:B — BVstA) dS
8

= f (4 grad, B — Bgrad, 4) @, dC (31)
¢

ff (AVs:B 4 grad, 4 -grad, B) dS
8
= f A4y -grad B) dS (32)
¢

it is easy to show that the eigenvalues u? and »? are real
and non-negative (and hence, that the eigenfunctions
can be chosen real), that the ®'s form an orthogonal sys-
tem and the ¥’'s another orthogonal system, and that
the vectors

grad, ®.,

grad, ¥,, X i,
form an orthogonal system on .S. These vectors are nor-
mal to the contour (C) of the aperture, and are there-

fore particularly well suited for expanding the vectors
Eane and H X 4, which are also normal to (C).




